Abstract
In core-shell silver nanoclusters, the control of core structure presents a more formidable challenge compared to that of the shell structure. Here, we report the successful synthesis and characterization of four distinct silver thiolate nanoclusters [MS4@Ag12@Ag46S24(dppb)12] (M = Mo or W), each incorporating a cup-like [MS4@Ag12]2+ kernel. These nanoclusters were meticulously prepared using (NH4)2MoS4 or (NH4)2WS4 as both a template and a controlled source of S2− ions. Remarkably, we have observed a unique configuration within these eight-electron superatomic Ag58 nanoclusters, where the zero-valent Ag atoms reside exclusively within the inner [MS4@Ag12]2+ kernel. This stands in contrast to other superatomic clusters possessing an Ag(0) core. Notably, the introduction of phenyl-containing compounds during the synthesis process induced a transformation in the space group symmetry from C2/c to I4¯. This transformative effect was found to originate from the interplay between adjacent 1,4-bis(diphenylphosphino)butane (dppb) ligands, which facilitated enhanced emission through aggregation-induced intermolecular interactions, specifically C−H···π interactions. Collectively, our findings contribute substantively to the understanding of the intricate relationship between nanocluster structures and their corresponding properties, shedding light on the crucial roles played by templates and diphosphine ligands in this context.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.