Abstract

Hydrogen evolution reaction (HER) through water splitting is a potential technology to realize the sustainable production of hydrogen, yet the tardy water dissociation and costly Pt-based catalysts inhibit its development. Here, a trapping-bonding strategy is proposed to realize the superassembly of surface-enriched Ru nanoclusters on a phytic acid modified nitrogen-doped carbon framework (denoted as NCPO-Ru NCs). The modified framework has a high affinity to metal cations and can trap plenty of Ru ions. The trapped Ru ions are mainly distributed on the surface of the framework and can form Ru nanoclusters at 50 °C with the synergistic effect of vacancies and phosphate groups. By adjusting the content of phytic acid, surface-enriched Ru nanoclusters with adjustable distribution and densities can be obtained. Benefiting from the adequate exposure of the active sites and dense distribution of ultrasmall Ru nanoclusters, the obtained NCPO-Ru NCs catalyst can effectively drive HER in alkaline electrolytes and show an activity (at overpotential of 50 mV) about 14.3 and 9.6 times higher than that of commercial Ru/C and Pt/C catalysts, respectively. Furthermore, the great performance in solar to hydrogen generation through water splitting provides more flexibility for wide applications of NCPO-Ru NCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call