Abstract

The self-consistent random phase approximation (RPA) approach with the residual interaction derived from a relativistic point-coupling energy functional is applied to evaluate the isospin symmetry-breaking corrections {\delta}c for the 0+\to0+ superallowed Fermi transitions. With these {\delta}c values, together with the available experimental ft values and the improved radiative corrections, the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is examined. Even with the consideration of uncertainty, the sum of squared top-row elements has been shown to deviate from the unitarity condition by 0.1% for all the employed relativistic energy functionals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.