Abstract

Let V be a variety of superalgebras with graded involution and let cngri(V) be its sequence of ⁎-graded codimensions. We say that V has polynomial growth nk if asymptotically cngri(V)≈ank, for some a≠0. Furthermore, V is minimal of polynomial growth nk if cngri(V) grows as nk and any proper subvariety of V has polynomial growth nt, with t<k. In this paper, we classify superalgebras with graded involution generating minimal varieties of quadratic growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.