Abstract

We present a new magnetic geometry, called the Super X divertor (SXD), that could potentially solve the enormous heat exhaust problem of next-generation high power-density experiments and fusion reactors. With only small changes in net coil currents, the axisymmetric SXD modification of the standard divertor (SD) coils greatly increases the divertor radius, the line length, and the plasma-wetted area. The lower B at large R decreases parallel heat flux and hence lowers the plasma temperature at SXD plates to below 10 eV, allowing higher divertor radiation fractions. The SXD could safely exhaust five times more heat than an SD, is unique in allowing adequate shielding of divertor target from neutron damage, and can enable much improved, reactor-relevant core plasma performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.