Abstract

HCSB-DEMO concept design is carried out at SWIP. In order to handle power from a core plasma region, a super-X divertor is preliminarily designed and investigated for HCSB-DEMO. It increases the target surface area by expanding the magnetic flux surface with another X-point generated near the targets and increases the parallel connection length by moving the outer divertor target to larger R and Z. The heat load at the targets is investigated by B2.5-Eirene. With heating power flowing into SOL/divertor regions being P = 600 MW, when the density at the separatrix is ne = 3.5 × 1019 m−3, the peak heat load at the inner and outer divertor is 9.2 MW/m2 and 3.7 MW/m2, respectively, which is much less than those of the standard divertor without impurity seeding, and also below the design targets (10 MW/m2). Thus the super-X divertor may work well for HCSB-DEMO to solve the high heat load problem at the divertor target without impurity seeding from this preliminary concept design and simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call