Abstract
This paper deals with the design and verification of a nonlinear control algorithm for the Mobile Wheeled Inverted Pendulum (MWIP) systems. The algorithm is based on the second-order sliding mode control known as Super-Twisting Algorithm (STA) which is able to eliminate the āchatteringā phenomenon and ensure robustness with respect to bounded disturbances. The stability of the closed-loop system can be guaranteed according to Lyapunov theorem. In order to show the effectiveness of the proposed controller, a simulation was carried out to make the basic MWIP model move at a constant speed. Additional simulation-testings considering model uncertainties and external disturbances were also provided to verify the effectiveness and robustness of the STA. Comparisons with the Sliding Mode Control (SMC) were given to demonstrate the superiorities of the STA and the results show the favorable performance of the proposed controller in terms of chattering elimination and robustness.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.