Abstract
AbstractHydrogels with high strength, high modulus, and high toughness have great application potential in the field of artificial human load‐bearing tissues, but the preparation of materials with the above high performance is still a huge challenge. In this paper, a structural construction strategy of ordered‐to‐disordered (OTD) transition is proposed to obtain hydrogel fibers with high strength, high modulus, and high toughness. The structural construction strategy of OTD refers to the ordered‐to‐disordered transition of molecular segments in PVA polymer fibers through swelling and subsequent salting‐out treatment, while still maintaining the general order of the entire polymer chain. PVA molecular chain crystallites provide physical crosslinking to stabilize the structure. The results show that the elongation at break of the hydrogel fiber can reach 257%). The strength reaches 190.04 MPa, which is more than 4 times higher than that of human ligaments. The modulus reaches 137.31 MPa, which perfectly matches the human ligaments, and the toughness can reach 100.61 MJ m−3. In addition, it has stable mechanical properties in liquid environment and excellent biocompatibility, which has great application potential in the field of artificial ligaments. This OTD structural construction strategy provides a facile approach to achieving hydrogel fibers with desired mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.