Abstract
ABSTRACT We investigate the origin of the measured overabundance of alkali metals in the atmospheres of hot gas giants, relative to both their host stars and their atmospheric water abundances. We show that formation exterior to the water snow line followed by inward disc-driven migration results in excess accretion of oxygen-poor, refractory-rich material from within the snow-line. This naturally leads to enrichment of alkali metals in the planetary atmosphere relative to the bulk composition of its host star but relative abundances of water that are similar to the stellar host. These relative abundances cannot be explained by in situ formation which places the refractory elements in the planetary deep interior rather than the atmosphere. We therefore suggest that the measured compositions of the atmospheres of hot Jupiters are consistent with significant migration for at least a subset of hot gas giants. Our model makes robust predictions about atmospheric composition that can be confirmed with future data from JWST and Ariel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.