Abstract

Lights carrying orbital angular momentum (OAM) have potential applications in precise rotation measurement, especially in remote sensing. Interferometers, especially nonlinear quantum interferometers, have also been proven to greatly improve the measurement accuracy in quantum metrology. By combining these two techniques, we theoretically propose a new atom-light hybrid Sagnac interferometer with OAM lights to advance the precision of the rotation measurement. A rotation sensitivity below standard quantum limit is achieved due to the enhancement of the quantum correlation of the interferometer even with 96% photon losses. This makes our protocol robustness to the photon loss. Furthermore, combining the slow light effect brings us at least four orders of magnitude of sensitivity better than the earth rotation rate. This new type interferometer has potential applications in high precision rotation sensing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call