Abstract
The super-sample tidal effect carries information on long-wavelength fluctuations that we cannot measure directly. It arises from the mode-coupling between short-wavelength and long-wavelength perturbations beyond a finite region of a galaxy survey and violates statistical isotropy of observed galaxy power spectra. In this paper, we propose the use of bipolar spherical harmonic (BipoSH) decomposition formalism to characterize statistically anisotropic power spectra. Using the BipoSH formalism, we perform a comprehensive study of the effect of the super-sample tides on measurements of other cosmological distortions such as the redshift-space distortion (RSD) and Alcock-Paczy\'{n}ski (AP) effects by means of the Fisher information matrix formalism. We find that the BipoSH formalism can break parameter degeneracies among the super-sample tidal, RSD and AP effects, indicating that the super-sample tides have little impact on the measurements of the RSD and AP effects. We also show that the super-sample tides are detectable with an accuracy better than the $\Lambda$CDM prediction without impairing the accuracy of measurements of other anisotropies assuming a SPHEREx-like galaxy survey.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.