Abstract

AbstractThe generation of ion-acoustic rogue waves in ultracold neutral plasmas (UNPs) composed of ion fluids and nonextensive electron distribution is investigated. For this purpose, basic equations are reduced to a nonlinear Schrödinger equation (NLSE) using a reductive perturbation technique. The existence region for the rogue waves defined precisely in terms of the critical wavenumber threshold kc. It is found that increasing the nonextensive parameter q would lead to a decrease of kc until q approaches to its critical value qc, then further increase of q beyond qc enhances kc; however, kc shrinks with the increase of the ions effective temperature ratio σ∗. The dependence of the first- and second-order rational solutions profile on the UNP parameters is numerically examined. It is noticed that near to the critical nonextensive parameter qc, the rogue wave amplitude becomes smaller, but it enhances whenever we stepped away from qc. However, the enhancement of the temperature ratio σ∗ and the wavenumber k reduces the envelope rogue wave amplitudes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.