Abstract

This article presents an optimization-based approach for counting and localizing stars within a small cluster, based on photon counts in a focal plane array. The array need not be arranged in any particular way, and relatively small numbers of photons are required to ensure convergence. The stars can be located close to one another, as the location and magnitude errors were found to be low when the separation was larger than 0.2 Rayleigh radii. To ensure generality of our approach, it was constructed as a special case of a general theory built upon topological signal processing using the mathematics of sheaves that is applicable to general source decomposition problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.