Abstract

Single-shot spatiotemporally encoded (SPEN) MRI has been validated to possess considerable performance in both spatial and temporal resolution. Water/fat separation is essential for MRI applications in which only water signal is needed. In this article, a super-resolved water/fat image reconstruction method (dubbed SWAF) combined prior knowledge was developed based on single-shot SPEN MRI. The point spread function of spatiotemporal encoding under multiple chemical shifts situation was derived and used for constructing an equation for SWAF image reconstruction. By processing the prior chemical shift information with filtering operation, an initial spin density profile of water/fat and a weighting matrix for water/fat residual artifacts suppression were obtained to guide the reconstruction process. A l1 norm minimization problem with regularization was exploited to reconstruct separated water/fat images with high spatial resolution and less residual/aliasing artifacts. Numeric simulation and experiments on water–oil phantom and rat abdomen/neck imaging demonstrated the effectiveness and robustness of this new method. The SWAF method proposed herein would promote the application of SPEN MRI in the cases where water/fat separation is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.