Abstract

In this paper we present a new approach allowing the surpassing of the diffraction based limitation for the achievable resolution provided by imaging systems. It is based on an encoding–decoding process of various spatial pixels or regions in the field of view of the imaged object by orthogonal and differently time varying polarization states. The reconstruction of the original spatial information is obtained by applying a decoding process in a way similar to the encoding one. Although all the spatial information is summed and mixed together by the system, the decoding provides super-resolved imaging since in every spatial position the undesired spatial information having time varying polarization dependence, that is uncorrelated to the decoding sequence applied on that specific spatial position, is averaged to zero and, on the other hand, the information which corresponds to that specific spatial region is being reinforced. The proposed approach can be used not only for super-resolved imaging but also for imaging module that maintains the same spatial resolution while providing enlarged field of view.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.