Abstract

Detecting small, subwavelength defect has known to be a challenging task mainly due to the diffraction limit, according to which the minimum resolvable size is in the order of the wavelength of a propagating wave. In this proof-of-concept study, we present a deep learning-enhanced super-resolution ultrasonic beamforming approach that computationally exceeds the diffraction limit and visualizes subwavelength defects. The proposed super-resolution approach is a novel subwavelength beamforming methodology enabled by a hierarchical deep neural network architecture. The first network (the detection network) globally detects defective regions from an ultrasonic beamforming image. Subsequently, the second network (the super-resolution network) locally resolves subwavelength-scale fine details of the detected defects. We validate the proposed approach using two independent datasets: a bulk wave array dataset generated by numerical simulations and guided wave array dataset generated by laboratory experiments. The results demonstrate that our deep learning super-resolution ultrasonic beamforming approach not only enables visualization of fine structural features of subwavelength defects, but also outperforms the existing widely-accepted super-resolution algorithm (time-reversal MUSIC). We also study key factors of the performance of our approach and discuss its applicability and limitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.