Abstract

We present a method for registering the position and orientation of bones across multiple computed-tomography (CT) volumes of the same subject. The method is subvoxel accurate, can operate on multiple bones within a set of volumes, and registers bones that have features commensurate in size to the voxel dimension. First, a geometric object model is extracted from a reference volume image. We use then unsupervised tissue classification to generate from each volume to be registered a super-resolution distance field--a scalar field that specifies, at each point, the signed distance from the point to a material boundary. The distance fields and the geometric bone model are finally used to register an object through the sequence of CT images. In the case of multiobject structures, we infer a motion-directed hierarchy from the distance-field information that allows us to register objects that are not within each other's capture region. We describe a validation framework and evaluate the new technique in contrast with grey-value registration. Results on human wrist data show average accuracy improvements of 74% over grey-value registration. The method is of interest to any intrasubject, same-modality registration applications where subvoxel accuracy is desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.