Abstract

A method of super-resolution reconstruction of remote sensing images based on convolutional neural network is proposed to address the problems of low-resolution and poor visual quality of remote sensing images. In this method, a sample database with high-resolution (HR) and low-resolution (LR) remote sensing images was constructed. A convolutional neural network was then obtained by determining the intrinsic relationship between HR and LR remote sensing images in the sample database. Multiple pairs of HR and LR images were selected from the sample database and sent into a six-layer convolutional neural network. The experimental results showed that compared with other learning-based methods, such as the fast super-resolution convolutional neural network (FSRCNN), the image quality obtained by our method is improved both subjectively and objectively. Moreover, the training time was ∼17 % less than in the FSRCNN method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.