Abstract

An adaptive two-step paradigm for the superresolution of optical images is developed in this paper. The procedure locally projects image samples onto a family of kernels that are learned from image data. First, an unsupervised feature extraction is performed on local neighborhood information from a training image. These features are then used to cluster the neighborhoods into disjoint sets for which an optimal mapping relating homologous neighborhoods across scales can be learned in a supervised manner. A super-resolved image is obtained through the convolution of a low-resolution test image with the established family of kernels. Results demonstrate the effectiveness of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.