Abstract

Compared to far-field ptychography, near-field ptychography can reduce the requirement on the detector dynamic range, while it is able to cover a larger field of view with a fewer number of sample scans. However, its spatial resolution is limited by the detector pixel size. Here, we utilize a pixel-super-resolved approach to overcome this limitation. The method has been applied to four types of experiment configurations using planar and divergent illuminations together with two different cameras with highly contrast specifications. The proposed method works effectively for up-sampling up to 6 times. Meanwhile, it can achieve ∼5.9-fold and ∼3.1-fold resolution improvement over the 6.5-μm and 2.4-μm detector pixel size. We also demonstrate the precisely quantitative phase imaging capability of the method by using a phase resolution target. The presented method is believed to have great potential in X-ray tomography and on-chip flow cytometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.