Abstract

Due to the influences of imaging conditions, spectral imagery can be coarse and contain a large number of mixed pixels. These mixed pixels can lead to inaccuracies in the land-cover class (LC) mapping. Super-resolution mapping (SRM) can be used to analyze such mixed pixels and obtain the LC mapping information at the subpixel level. However, traditional SRM methods mostly rely on spatial correlation based on linear distance, which ignores the influences of nonlinear imaging conditions. In addition, spectral unmixing errors affect the accuracy of utilized spectral properties. In order to overcome the influence of linear and nonlinear imaging conditions and utilize more accurate spectral properties, the SRM based on spatial–spectral correlation (SSC) is proposed in this work. Spatial correlation is obtained using the mixed spatial attraction model (MSAM) based on the linear Euclidean distance. Besides, a spectral correlation that utilizes spectral properties based on the nonlinear Kullback–Leibler distance (KLD) is proposed. Spatial and spectral correlations are combined to reduce the influences of linear and nonlinear imaging conditions, which results in an improved mapping result. The utilized spectral properties are extracted directly by spectral imagery, thus avoiding the spectral unmixing errors. Experimental results on the three spectral images show that the proposed SSC yields better mapping results than state-of-the-art methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call