Abstract
Human hair medulla chemical composition appears mostly homogenous when mapped by FTIR microspectroscopy even when using a synchrotron radiation source (SR-μFTIR) but it is expected to be heterogeneous. We performed sub-micron chemical mapping of hair cortex and medullas using Optical Photothermal Infrared microspectroscopy (OPTIR) and a mid-infrared Quantum Cascade Laser (QCL) source covering the fingerprint and the CH stretching region. Photodamages were observed in the hair cortex at mild laser power and occurred in the hair medulla even at the lowest power settings of the IR QCL pulsed at 100 kHz rate (4 μW/μm2 average power density) and visible probe laser (200 μw/μm2 average power density). Photoconversion of calcium carboxylates in other molecules, possibly sodium carboxylates, was observed. Attenuation of the IR QCL power by 40% using ZnSe filter and/or high-speed measurements (1000 cm−1/s) succeeded in almost completely eliminating the photodamages and photoconversion. OPTIR maps and images showed that the medullas were highly heterogeneous at the submicron scale. We found calcium carboxylates, aliphatic lipids and wax esters in small units, hundreds of nanometers in size. The 1470 cm−1 CO sym stretching peak of calcium carboxylates and the CH2asym stretching peak from aliphatic lipids proved to be the most efficient peaks to track the distribution of these molecules. OPTIR had enough sensitivity to map accurately only the strongest peaks from lipids and calcium carboxylates, weaker peaks such as the ester CO and sulfoxide SO bands were not accurately detected by OPTIR even when they were shown to be present by SR-μFTIR. Quantification of the medulla components by OPTIR is difficult due to several factors: discontinuous QCL emission, and noise. The weaker peaks such as CH3, CO, SO are often underestimated or not detected. We demonstrate here that OPTIR can be used to measure, map and image dark, photosensitive samples using very low IR power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.