Abstract

The phenomenon of super-resolution in time-reversal acoustics is analyzed theoretically and with numerical simulations. A signal that is recorded and then retransmitted by an array of transducers, propagates back though the medium, and refocuses approximately on the source that emitted it. In a homogeneous medium, the refocusing resolution of the time-reversed signal is limited by diffraction. When the medium has random inhomogeneities the resolution of the refocused signal can in some circumstances beat the diffraction limit. This is super-resolution. A theoretical treatment of this phenomenon is given, and numerical simulations which confirm the theory are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call