Abstract

An epi-illumination system based on microlens arrays enables field-independent imaging of multiple cells with nanoscale resolution and large field of views. Biological processes are inherently multi-scale, and supramolecular complexes at the nanoscale determine changes at the cellular scale and beyond. Single-molecule localization microscopy (SMLM)1,2,3 techniques have been established as important tools for studying cellular features with resolutions of the order of around 10 nm. However, in their current form these modalities are limited by a highly constrained field of view (FOV) and field-dependent image resolution. Here, we develop a low-cost microlens array (MLA)-based epi-illumination system—flat illumination for field-independent imaging (FIFI)—that can efficiently and homogeneously perform simultaneous imaging of multiple cells with nanoscale resolution. The optical principle of FIFI, which is an extension of the Kohler integrator, is further elucidated and modelled with a new, free simulation package. We demonstrate FIFI's capabilities by imaging multiple COS-7 and bacteria cells in 100 × 100 μm2 SMLM images—more than quadrupling the size of a typical FOV and producing near-gigapixel-sized images of uniformly high quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call