Abstract
Advanced probes for imaging viscous lipids microenvironment in vitro and in vivo are desirable for the study of membranous organelles and lipids traffic. Herein, a reaction-based dihydroquinoline probe (DCQ) was prepared via linking a diethylamino coumarin fluorophore with a N-methylquinoline moiety. DCQ is stable in low viscous aqueous mediums and exhibits green fluorescence, which undergoes fast autoxidation in high viscous mediums to form a fluorescent product with deep-red to near-infrared (NIR) emission, rendering the ability for dual-color imaging. Living cell imaging indicated that DCQ can effectively stain lysosomal membranes with deep-red fluorescence. Super-resolution imaging of lysosome vesicles has been achieved by DCQ and stimulated emission depletion (STED) microscopy. In addition, DCQ realizes multiple organs imaging in zebrafish, whose dual-color emission can perfectly discriminate zebrafish's yolk sac, digestive tract and gallbladder. Most importantly, DCQ has been successfully used to establish a gallbladder-visualizable zebrafish model for the evaluation of drug stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.