Abstract

Due to the multi-scale and spectral features of remote sensing images compared to natural images, there are significant challenges in super-resolution reconstruction (SR) tasks. Networks trained on simulated data often exhibit poor reconstruction performance on real low-resolution (LR) images. Additionally, compared to natural images, remote sensing imagery involves fewer high-frequency components in network construction. To address the above issues, we introduce a new high–low-resolution dataset GF_Sen based on GaoFen-2 and Sentinel-2 images and propose a cascaded network CSWGAN combined with spatial–frequency features. Firstly, based on the proposed self-attention GAN (SGAN) and wavelet-based GAN (WGAN) in this study, the CSWGAN combines the strengths of both networks. It not only models long-range dependencies and better utilizes global feature information, but also extracts frequency content differences between different images, enhancing the learning of high-frequency information. Experiments have shown that the networks trained based on the GF_Sen can achieve better performance than those trained on simulated data. The reconstructed images from the CSWGAN demonstrate improvements in the PSNR and SSIM by 4.375 and 4.877, respectively, compared to the relatively optimal performance of the ESRGAN. The CSWGAN can reflect the reconstruction advantages of a high-frequency scene and provides a working foundation for fine-scale applications in remote sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.