Abstract
High-resolution analysis of biomolecules has brought unprecedented insights into fundamental biological processes and dramatically advanced biosensing. Notwithstanding the ongoing resolution revolution in electron microscopy and optical imaging, only a few methods are presently available for high-resolution analysis of unlabeled single molecules in their native states. Here, label-free electrical sensing of structured single molecules with a spatial resolution down to single-digit nanometers is demonstrated. Using a narrow solid-state nanopore, the passage of a series of nanostructures attached to a freely translocating DNA molecule is detected, resolving individual nanostructures placed as close as 6nm apart and with a surface-to-surface gap distance of only 2nm. Such super-resolution ability is attributed to the nanostructure-induced enhancement of the electric field at the tip of the nanopore. This work demonstrates a general approach to improving the resolution of single-molecule nanopore sensing and presents a critical advance towards label-free, high-resolution DNA sequence mapping, and digital information storage independent of molecular motors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.