Abstract

New-joined 2D layered material – black phosphorus (BP), due to strong in-plane structural anisotropy, has exhibited exotic electrical, optical, and thermal properties while its thermal radiative properties are still largely unexplored. Here, we investigate near-field thermal radiation of mono/multilayer BP, and find that monolayer BP can support three-order-of-magnitude enhanced heat exchange over blackbodies, even exceeding optimized graphene sheets by around 18.5%. We derive the dispersion relation of coupled anisotropic BP surface plasmon polaritons (SPPs), which is find to have a good agreement with the energy transmission contour of evanescent waves. The prominent thermal radiation rate thus can be attributed to the excitation of quasi-elliptic BP SPPs enabled by its unique structural anisotropy and doping. With increasing number of layers, near-field radiative heat flux decreases monotonously. The underlying mechanism lies in the increased imaginary part of optical conductivity but weak coupling with high-wavevector photons. This work helps elucidate the near-field thermal radiation mechanism of mono/multilayer BP, and paves the way for the application of emerging BP in noncontact thermal management and energy conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.