Abstract

Femtosecond laser sources and optical frequency combs in the molecular fingerprint region of the electromagnetic spectrum are crucial for a plethora of applications in natural and life sciences. Here we introduce Cr2+-based lasers as a convenient means for producing super-octave mid-IR electromagnetic transients via optical rectification (or intra-pulse difference frequency generation, IDFG). We demonstrate that a relatively long, 2.5 μm, central wavelength of a few-cycle Cr2+:ZnS driving source (20 fs pulse duration, 6 W average power, 78 MHz repetition rate) enabled the use of highly nonlinear ZnGeP2 crystal for IDFG with exceptionally high conversion efficiency (>3%) and output power of 0.15 W, with the spectral span of 5.8–12.5 μm. Even broader spectrum was achieved in GaSe crystal: 4.3–16.6 μm for type I and 5.8–17.6 μm for type II phase matching. The results highlight the potential of this architecture for ultrafast spectroscopy and generation of broadband frequency combs in the longwave infrared.

Highlights

  • Few-cycle laser sources with a spectral span exceeding an octave in the longwave portion of the mid-IR spectrum (5–20 μm, 15–60 THz) are vital for a number of applications, ranging from molecular fingerprinting with dual optical frequency combs [1], IR nano-imaging [2], Fourier transform infrared nanospectroscopy absorption spectroscopy [3], time-resolved optical spectroscopy, and studies of ultrafast dynamics [4,5] to high-field science [6]

  • Remarkable examples include supercontinuum generation (SCG) in chalcogenide fibers driven by an optical parametric amplifier (OPA) [7], and augmentation of the OPA spectrum by SCG via cascaded quadratic nonlinearities in crystals [8]

  • Another large family of super-octave mid-IR sources is based on frequency divideby-2 optical parametric oscillators (OPOs) that feature broad bandwidth, low pumping thresholds [9], high conversion efficiency [10], and the capability to scale the average power of an octave-spanning output to watt level [11]

Read more

Summary

Introduction

Few-cycle laser sources with a spectral span exceeding an octave in the longwave portion of the mid-IR spectrum (5–20 μm, 15–60 THz) are vital for a number of applications, ranging from molecular fingerprinting with dual optical frequency combs [1], IR nano-imaging [2], Fourier transform infrared nanospectroscopy (nano-FTIR) absorption spectroscopy [3], time-resolved optical spectroscopy, and studies of ultrafast dynamics [4,5] to high-field science [6]. Another large family of super-octave mid-IR sources is based on frequency divideby-2 (subharmonic) optical parametric oscillators (OPOs) that feature broad bandwidth, low pumping thresholds [9], high conversion efficiency [10], and the capability to scale the average power of an octave-spanning output to watt level [11].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call