Abstract

AbstractHigh refractive index dielectrics enable nanoscale integration of optical components with practically no absorption loss. Hence, high index dielectrics are promising for many emerging applications in nanophotonics. However, the lack of a complete library of high index dielectric materials poses a significant challenge to understanding the full potential for dielectric nanophotonics. Currently, it is assumed that the absorption edge and the sub‐bandgap refractive index of a semiconductor exhibit a rigid trade‐off, popularly known as the Moss rule. Thus, the Moss rule appears to set an upper limit on the refractive index of a dielectric for a given operating wavelength. However, there are many dielectric materials that surpass the Moss rule, referred to here as super‐Mossian dielectrics. Here, the general features of super‐Mossian dielectrics and their physical origin are discussed to facilitate the search for high index dielectrics. As an example, iron pyrite, an outstanding super‐Mossian material with index nearly 40% higher than the Moss rule prediction, is developed. The local dielectric resonances in iron pyrite nanoresonators are experimentally observed, and the impact of super‐Mossian materials on nanophotonics is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.