Abstract

Polymers that can respond reversibly by changing their physical or chemical properties are recognized as stimuli‐responsive polymers. The renowned temperature‐sensitive polymer is poly(N‐isopropyl acrylamide) (p(NIPAM)), and here, homopolymeric supermacroporous p(NIPAM)) cryogel was synthesized via cryopolymerization technique at cryogenic condition (below melting point of solvent, −18°C). Then, the prepared p(NIPAM) cryogel was characterized via scanning electron microscopy, Fourier transform infrared radiation spectrometer, and thermogravimetric analyzer. The lower critical solution temperature (LCST) value of the prepared p(NIPAM) cryogel was determined from % swelling equilibrium swellings at various temperatures, 20, 25, 30, 35, 40, 45, and 50°C, respectively. Furthermore, the pore volume and porosity of p(NIPAM) cryogels were compared below and above the LCST values. Finally, the separation capability of p(NIPAM) cryogels for some molecules such as tannic acid, gallic acid, nicotine (N), and caffeine (C) was investigated at the below and above the LCST values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.