Abstract

Super-Lorentzian effects in the troughs between HCl lines were observed long time ago [Varanasi et al., J Quant Rad Transfer, Vol. 12, pag. 857, 1972]. The observed spectral shape was then modelled by using an empirical law and there was no explanation about the mechanisms underlying these super-Lorentzian effects. In this work, new spectra of pure HCl and HCl diluted in Ar have been measured using a high resolution Fourier Transform spectrometer, for pressure from 6 to 10 bars. Spectra of pure HCl and HCl in Ar have been also computed using classical molecular dynamics simulations (CMDS). First comparisons between CMDS-calculated spectra and measured ones, for regions at the troughs between HCl lines, show that the observed super-Lorentzian behaviour is correctly reproduced by the calculations. These results thus open the paths for the determination of the origin of these super-Lorentzian effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.