Abstract
Metallic lithium with high theoretical specific capacity is usually regarded as an attractive electrode material for high-energy-density batteries. However, the wide practical applications of lithium metal batteries are severely limited by the random metallic lithium accumulation on a working lithium anode. Here, tetrachloro-1,4-benzoquinone (TCBQ) was adapted as an electrolyte additive, which possesses the relatively low lowest unoccupied molecular orbital and can generate quinone lithium salt (Li2TCBQ) in SEI layer during cycling. According to the molecular dynamics simulations, Li2TCBQ is lithiophilic that can serve as the lithium plating guidance to regulate uniform lithium deposition relying on the high lithium-ion affinity. The cell with TCBQ-added electrolyte can be deeply cycled at a high capacity of 5 mAh cm−2 without formation of isolated lithium, and decomposition of organic solvents during cycling in carbonate electrolyte is suppressed effectively. The use of TCBQ additive offers a new approach to realize high energy-density lithium metal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.