Abstract
Let $M$ be a super Riemann surface with holomorphic distribution $\mathcal{D}$ and $N$ a symplectic manifold with compatible almost complex structure $J$. We call a map $\Phi\colon M\to N$ a super $J$-holomorphic curve if its differential maps the almost complex structure on $\mathcal{D}$ to $J$. Such a super $J$-holomorphic curve is a critical point for the superconformal action and satisfies a super differential equation of first order. Using component fields of this super differential equation and a transversality argument we construct the moduli space of super $J$-holomorphic curves as a smooth subsupermanifold of the space of maps $M\to N$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.