Abstract

Transparent polymeric thin films with high oxygen barrier are important for extending the shelf life of food and protecting flexible organic electronic devices. Polyelectrolyte/clay multilayer nanocoatings are shown to exhibit super gas barrier performance, but the layer-by-layer assembly process requires numerous deposition steps. In an effort to more quickly fabricate this type of barrier, a polyelectrolyte/clay coacervate composed of branched polyethyleneimine (PEI), poly(acrylic acid) (PAA), and kaolinite (KAO) clay is prepared and deposited in a single step, followed by humidity and thermal post-treatments. When deposited onto a 179 µm poly(ethylene terephthalate) (PET) film, a 4 µm coacervate coating reduces the oxygen transmission rate (OTR) by more than three orders of magnitude, while maintaining high transparency. This single-step deposition process uses only low-cost, water-based components and ambient conditions, which can be used to for sensitive food and electronics packaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.