Abstract

We developed super-delta2, a differential gene expression analysis pipeline designed for multi-group comparisons for RNA-seq data. It includes a customized one-way ANOVA F-test and a post-hoc test for pairwise group comparisons; both are designed to work with a multivariate normalization procedure to reduce technical noise. It also includes a trimming procedure with bias-correction to obtain robust and approximately unbiased summary statistics used in these tests. We demonstrated the asymptotic applicability of super-delta2 to log-transformed read counts in RNA-seq data by large sample theory based on Negative Binomial Poisson (NBP) distribution. We compared super-delta2 with three commonly used RNA-seq data analysis methods: limma/voom, edgeR and DESeq2 using both simulated and real datasets. In all three simulation settings, super-delta2 not only achieved the best overall statistical power, but also was the only method that controlled type I error at the nominal level. When applied to a breast cancer dataset to identify differential expression pattern associated with multiple pathologic stages, super-delta2 selected more enriched pathways than other methods, which are directly linked to the underlying biological condition (breast cancer). In conclusion, by incorporating trimming and bias-correction in the normalization step, super-delta2 was able to achieve tight control of type I error. Because the hypothesis tests are based on asymptotic normal approximation of the NBP distribution, super-delta2 does not require computationally expensive iterative optimization procedures used by methods such as edgeR and DESeq2, which occasionally have convergence issues. Our method is implemented in a R-package, 'superdelta2', freely available at: https://github.com/fhlsjs/superdelta2. Supplementary data are available at Bioinformatics online.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call