Abstract

We prove in this paper the second-order super-convergence in $$L^{\infty }$$ -norm of the gradient for the Shortley–Weller method. Indeed, this method is known to be second-order accurate for the solution itself and for the discrete gradient, although its consistency error near the boundary is only first-order. We present a proof in the finite-difference spirit, using a discrete maximum principle to obtain estimates on the coefficients of the inverse matrix. The proof is based on a discrete Poisson equation for the discrete gradient, with second-order accurate Dirichlet boundary conditions. The advantage of this finite-difference approach is that it can provide pointwise convergence results depending on the local consistency error and the location on the computational domain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.