Abstract
An advanced nonlinear continuum model is presented to analyse the super and subcritical nonlinear behaviour of nanotubes. The nanoscale system is used to convey fluid flow at nanoscale levels. Due to the restrictions of one-parameter size-dependent models, a more comprehensive nonlinear coupled model containing two different size parameters is introduced using the nonlocal strain gradient theory (NSGT). Both axial and transverse inertial terms are taken into consideration, leading to more accurate results for nanotubes conveying fluid. In addition, since the mean free path of molecules is not negligible compared to the diameter of the tube at nanoscales, the Beskok–Karniadakis approach is implemented. The NSGT, Galerkin’s technique and continuation method are finally employed to derive, discretise and solve the coupled nonlinear equations, respectively. The frequency–amplitude response, modal interactions and the possibility of energy transfer between modes are examined in both supercritical and subcritical flow regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.