Abstract

Sub-1 nm nanowires (SNWs) can not only be processed like polymers due to their polymer-analogue properties but also show multifunctions owing to their well-manipulated compositions and structures. Rationally designed and engineered multicomponent heterostructure SNWs can further enhance their multifunction performance while it is very challenging to achieve such SNWs at sub-nanoscale. Herein, we synthesized Bi2O3-polyoxometalate heterostructure SNWs (PMB SNWs), and fabricated super-aligned PMB SNWs films (S-PMB SNWs films), which can serve as interlayers to efficiently suppress lithium polysulfide (LPS) shuttling, intrinsically promote the redox kinetics of the LPS conversion and substantially protect the Li anode. The lithium-sulfur (Li-S) battery with the S-PMB SNWs film as the interlayer showcases an ultralow capacity decay rate with 0.013% per cycle over 850 cycles. This study demonstrates the potential of heterostructure SNWs to improve the performance of Li-S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.