Abstract

A novel nanocomposite bead based on polymeric matrix of carboxymethyl cellulose and copper oxide-nickel oxide nanoparticles was synthesized, characterized, and applied for adsorptive removal of inorganic and organic contaminants at trace level of part per million (mgL-1) from aqueous sample. Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) adsorbent beads were selective toward the removal of Pb(II) among other metal ions. The removal percentage of Pb(II) was more than 99% with 3 mgL-1. The waste beads after Pb (II) adsorption (Pb@CMC/CuO-NiO) and CMC/CuO-NiO nanocomposite beads were employed as adsorbents for removing of various dyes. It was found that Pb@CMC/CuO-NiO can be reused as adsorbent for the removal of Congo Red (CR), while CMC/CuO-NiO nanocomposite beads were more selective for removal of Eosin Yellow (EY) from aqueous media. The adsorption of CR and EY was optimized, and the removal percentages were 93% and 96.4%, respectively. The influence of different parameters was studied on the uptake capacity of Pb(II), CR, and EY, and lastly, the CMC/CuO-NiO beads exhibited responsive performance in relation to pH and other parameters. Thus, the prepared CMC/CuO-NiO beads were found to be a smart material which is effective and played super adsorption performance in the removal of Pb(II), CR, and EY from aqueous solution. These features make CMC/CuO-NiO beads suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial adsorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.