Abstract

A simple approximation scheme to describe the half width of the Voigt profile as a function of the relative contributions of Gaussian and Lorentzian broadening is presented. The proposed approximation scheme is highly accurate and provides an accuracy better than 10−17 for arbitrary αL/αG ratios. In particular, the accuracy reaches an astonishing 10−34 (quadruple precision) in the domain 0 ≤ αL/αG ≤ 0.2371 ∪ αL/αG ≥ 33.8786.

Highlights

  • We present a simple approximation scheme to describe the half width of the Voigt profile as a function of the relative contributions of Gaussian and Lorentzian broadening

  • A simple approximation scheme to describe the half width of the Voigt profile as a function of the relative contributions of Gaussian and Lorentzian broadening is presented in this work

  • The numerical calculations suggest that the proposed approximation scheme can achieve super-accuracy calculation for Voigt profiles for arbitrary αL /αG ratios

Read more

Summary

Introduction

There is no analytically exact expression to describe the HWHM of the Voigt profile as a function of the HWHMs of the Lorentzian and Gaussian profiles, αL and αG , respectively, and many approximations have been presented in the past to find simple relationships, i.e., composed of basic elementary functions only, between αV , αL and αG [13,14,15,16,17]. A highly accurate approximate scheme specially used to evaluate the half width at half maximum of the Voigt profile is urgently needed. We present a simple approximation scheme to describe the half width of the Voigt profile as a function of the relative contributions of Gaussian and Lorentzian broadening.

Methodology and Derivation
Half Width Approximation Scheme for Arbitrary Voigt Profile
Error Analysis
An Applicable Example
Pa toapproximation
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.