Abstract

Recently, there has been considerable research on deepfake detection. However, most existing methods face challenges in adapting to the advancements in new generative models within unknown domains. In addition, the emergence of new generative models capable of producing and editing high-quality images, such as diffusion, consistency, and LCM, poses a challenge for traditional deepfake training models. These advancements highlight the need for adapting and evolving existing deepfake detection techniques to effectively counter the threats posed by sophisticated image manipulation technologies. In this paper, our objective is to detect deepfake videos in unknown domains using unlabeled data. Specifically, our proposed approach employs Meta Pseudo Labels (MPL) with supervised contrastive learning, so-called SupCon-MPL, allowing the model to be trained on unlabeled images. MPL involves the simultaneous training of both a teacher model and a student model, where the teacher model generates pseudo labels utilized to train the student model. This method aims to enhance the adaptability and robustness of deepfake detection systems against emerging unknown domains. Supervised contrastive learning utilizes labels to compare samples within similar classes more intensively, while encouraging greater distinction from samples in dissimilar classes. This facilitates the learning of features in a diverse set of deepfake images by the model, consequently contributing to the performance of deepfake detection in unknown domains. When utilizing the ResNet50 model as the backbone, SupCon-MPL exhibited an improvement of 1.58% in accuracy compared with traditional MPL in known domain detection. Moreover, in the same generation of unknown domain detection, there was a 1.32% accuracy enhancement, while in the detection of post-generation unknown domains, there was an 8.74% increase in accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.