Abstract

We use high-resolution hydrodynamic re-simulations to investigate the properties of the thermal Sunyaev-Zel'dovich (SZ) effect from galaxy clusters. We compare results obtained using different physical models for the intracluster medium (ICM), and show how they modify the SZ emission in terms of cluster profiles and scaling relations. We also produce realistic mock observations to verify whether the results from hydrodynamic simulations can be confirmed. We find that SZ profiles depend marginally on the modelled physical processes, while they exhibit a strong dependence on cluster mass. The central and total SZ emission strongly correlate with the cluster X-ray luminosity and temperature. The logarithmic slopes of these scaling relations differ from the self-similar predictions by less than 0.2; the normalization of the relations is lower for simulations including radiative cooling. The observational test suggests that SZ cluster profiles are unlikely to be able to probe the ICM physics. The total SZ decrement appears to be an observable much more robust than the central intensity, and we suggest using the former to investigate scaling relations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.