Abstract

We have obtained deep SZ observations towards 15 of the apparently hottest XMM Cluster Survey (XCS) clusters that can be observed with the Arcminute Microkelvin Imager (AMI). We use a Bayesian analysis to quantify the significance of our SZ detections. We detect the SZ effect at high significance towards three of the clusters and at lower significance for a further two clusters. Towards the remaining ten clusters, no clear SZ signal was measured. We derive cluster parameters using the XCS mass estimates as a prior in our Bayesian analysis. For all AMI-detected clusters, we calculate large-scale mass and temperature estimates while for all undetected clusters we determine upper limits on these parameters. We find that the large- scale mean temperatures derived from our AMI SZ measurements (and the upper limits from null detections) are substantially lower than the XCS-based core-temperature estimates. For clusters detected in the SZ, the mean temperature is, on average, a factor of 1.4 lower than temperatures from the XCS. For clusters undetected in SZ, the average 68% upper limit on the mean temperature is a factor of 1.9 below the XCS temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.