Abstract

We address a possibility of the flare process initiation and further maintenance of its energy release due to a transformation of sunspot longitudinal waves into transverse magnetic loop oscillations with initiation of reconnection. This leads to heating maintaining after the energy release peak and formation of a flat stage on the X-ray profile. We applied the time-distance plots and pixel wavelet filtration (PWF) methods to obtain spatio-temporal distribution of wave power variations in SDO/AIA data. To find magnetic waveguides, we used magnetic field extrapolation of SDO/HMI magnetograms. The propagation velocity of wave fronts was measured from their spatial locations at specific times. In correlation curves of the 17 GHz (NoRH) radio emission we found a monotonous energy amplification of 3-min waves in the sunspot umbra before the 2012 June 7 flare. This dynamics agrees with an increase in the wave-train length in coronal loops (SDO/AIA, 171 {\AA}) reaching the maximum 30 minutes prior to the flare onset. A peculiarity of this flare time profile in soft X-rays (RHESSI, 3-25 keV) is maintaining the constant level of the flare emission for 10 minutes after the short impulse phase, which indicates at the energy release continuation. Throughout this time, we found 30-sec period transverse oscillations of the flare loop in the radio-frequency range (NoRH, 17 GHz). This periodicity is apparently related to the transformation of propagating longitudinal 3-min waves from the sunspot into the loop transverse oscillations. The magnetic field extrapolation showed the existence of the magnetic waveguide (loop) connecting the sunspot with the energy release region. A flare loop heating can be caused by the interaction (reconnections) of this transversally oscillating waveguide with the underlying twisted loops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call