Abstract

The present research investigates the use of ionic silver coated sand dust (ISSD) for the sunlight mediated degradation of diesel under saline conditions. Sand dust was used as a template for reduction of silver ions by effective removal of chloride ions. Diesel degradation was estimated in terms of degradation (%), chloride removal, volume reduction and nanoparticle synthesis, respectively. The process was optimized using a 7-level Box–Behnken design. Among several factors, time (B), Tween 80 (C), ISSD dosage (D) and silver(I) concentration (F) were found to be most significant. Maximum diesel degradation 99.8% was obtained in a period of 14h which was analyzed by gas chromatography. XPS analysis confirmed silver reduction as the underlying phenomena. TEM analysis and albeit first approximation method confirmed that enhanced degradation occurred due to physical contact between diesel components and ISSD. First order kinetic model exhibited the best fit. Light microscopy results showed the various stages in diesel degradation by a reduction in bubble size. Ex situ application was carried out using ISSD impregnated thiourea modified chitosan/PVA membranes by surface floatation technique for the remediation of diesel contaminated sea water. Complete diesel degradation was noted after 48h of sunlight exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.