Abstract

The organic solar cell has attracted much interest due to its high power conversion efficiency and low cost. This paper studies the interlaminar stresses between the working layer and the substrate of the organic solar cell. The effects of solar irradiation and wind speed have been considered as well. The multilayered film model and the thin film–substrate model are employed separately in reaction to the different magnitude of the film and substrate thickness. Both models straightforwardly show the dangerous stress areas at the two ends of the working layer. Numerical examples reveal that the interlaminar stress increases as the solar irradiation increases while decreases with the wind speed increasing. A thicker working layer of the organic solar cell results in larger interlaminar stresses. The critical value of sunlight irradiation for varying external environment is predicted. The critical value of sunlight irradiation at the wind speed of Vf = 15 m/s increases by nearly 20%, compared with that of the wind speed Vf = 5 m/s. In addition, the effect of the equivalent thermal expansion coefficient of the working layer on the interlaminar stress is also explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.