Abstract
Natural sunlight is a vital environmental element and plays a significant role in the ecological storage of reclaimed water (RW), but its impacts on RW quality are poorly understood. In this study, sunlight-induced changes in RW with a focus on dissolved organic matter (rDOM) and 52 residual micropollutants were investigated in the field during the summer and winter seasons. The results indicated that sunlight exposure led to the dissipation of chromophoric DOM (CDOM) in the summer (55% loss) and winter (19% loss) after 14 consecutive sunny days. During open storage of RW, CDOM absorption in UVC regions was preferentially removed in the summer, while during the winter there was preferential removal of CDOM in UVA regions. The results also showed higher fluorescent DOM (FDOM) removal in summer than in winter (49% and 28%, respectively). Results in both seasons indicated that humic acid-like compounds were the most photolabile fractions and were preferentially removed under sunlight exposure. Sunlight also induced attenuation of micropollutants in the summer and winter at reductions of 66% and 24% from the initial values, respectively. Significant attenuation (>75%) was only observed for endocrine-disrupting chemicals, pharmaceuticals, and sunscreens in the summer, but they accounted for 76% of the total concentrations. Vibrio fischeri toxicity tests demonstrated that sunlight constantly decreased the luminescent bacteria acute toxicity of RW, which was estimated to be caused mainly by the sunlight-induced changes of FDOM and CDOM, while the detected micropollutants could only explain 0.02%–2% of acute toxicity. These findings have important implications regarding our understanding of the ecological storage of reclaimed water and the contribution of management strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.