Abstract

Directing against the problems of too large size of the neural network structure due to the existence of a complex relationship between the input coupling factor and too many input factors in establishing model for predicting temperature of sunlight greenhouse. This article chose the environmental factors that affect the sunlight greenhouse temperature as data sample. Through the principal component analysis of data samples, three main factors were extracted. These selected principal component values were taken as the input variables of BP neural network model. Use the Bayesian regularization algorithm to improve the BP neural network. The empirical results show that this method is utilized modify BP neural network, which can simplify network structure and smooth fitting curve, has good generalization capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.