Abstract
Herein, a simple, effective, and general strategy is demonstrated to obtain a water-soluble and nontoxic cellulose-based photosensitizer (CPS) with enhanced photodynamic antibacterial activity through introducing protoporphyrin IX (PpIX) and quaternary ammonium salt (QAS) groups onto the cellulose backbone. The synergistic effect of the anchoring and diluting effect of the cellulose backbone and the electrostatic repulsion between QAS groups effectively inhibit the π-π stacking of PpIX groups, thus the as-prepared CPS exhibits markedly enhanced reactive oxygen species (ROS) yield. Meanwhile, the positively charged QAS groups endow the CPS with water-solubility and a strong attractive force to bacteria. As a result, the CPS can rapidly and efficiently kill drug-resistant bacteria strains, including E. coli and S. aureus, with a low light dose (2.4 J cm-2 ) and low concentration of PpIX groups (0.35 × 10-6 m). Benefiting from the excellent processability and formability, the CPS is readily applied as a sunlight-driven wearable and robust antibacterial coating by a spray coating and later crosslinking procedure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.